5-HYDROPEROXYEICOSATETRAENOIC ACID (5-HPETE) ENHANCES THE SYNTHESIS OF 1-O-ALKYL-2-SN-ACETYL-GLYCERO-3-**PHOSPHOCHOLINE (PAF) IN fMET-LEU-PHE-STIMULATED HL-60 CELLS: KEY ROLE OF DIACYLGLYCEROL (DAG) IN ACTIVATION OF PROTEIN KINASE C (PKC)**

SANTOSH NIGAM and STEFAN MÜLLER

Department of Gynecological Endocrinology, Universitätsklinikum Steglitz, Free University Berlin, Berlin-West, W. Germany

We investigated the effect of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) on the PAF formation in fMet-Leu-Phe-stimulated HL-60 cells. 5-HPETE was found to enhance the PAF synthesis in fmlpstimulated cells without causing additional mobilization of intracellular calcium. However, a significant increase in diacylglycerol (DAG) levels due to 5-HPETE was observed, which in turn activated the protein kinase C (PKC). Obviously, PKC is responsible for the activation of phospholipase A, and the release of lyso-PAF and AA from complex lipid stores. Further, the dose-dependent increase in DAG production in absence of simultaneous increase in total inositol phosphates is indicative of an additional source for DAG besides PIP₂.

KEY WORDS: 5-HPETE, PAF, fMet-Leu-Phe, Diacylglycerol, Protein kinase C, HL-60 cells.

INTRODUCTION

The stimulation of human neutrophils with agonists like A23187 or fMet-Leu-Phe (fmlp) leads to a rapid release of arachidonic acid (AA) as well as 1-O-alkyl-2-lysoglycero-3-phosphocholine (lyso-PAF).¹⁻⁵ However, the mechanisms for the action of these agonists are different. A23187 increases rapidly intracellular calcium, and thus activates phospholipase A2 (PLA2) and phospholipase C (PLC);6-8 whereas fmlp activates the PLC in cells through a specific receptor via a G-protein, which then leads to breakdown of phosphatidylinositol-4,5-bisphosphate (PIP_2) into inositol-1,4,5triphosphate (IP₃) and 1,2-diacylglycerol (DAG).⁹⁻¹¹ IP₃ and DAG serve as messengers for the mobilization of intracellular calcium and the activation of protein kinase C (PKC) respectively.^{10,12} Activated PKC, together with intracellular calcium, has been reported to activate PLA_2 .¹³ Subsequently, released AA is metabolized mainly by 5-lipoxygenase to 5-hydroperoxytetraeicosaenoic acid (5-HPETE), which is further transformed to 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B_4

Correspondence to: Dr. Santosh Nigam, Eicosanoid Research, Dept. of Gynecological Endocrinology, Universitätsklinikum Steglitz, Free University Berlin, D-1000 Berlin 45, Federal Republic of Germany.

(LTB4).¹⁴⁻¹⁶ Lyso-PAF is acetylated by the enzyme acetyltransferase to 1-O-alkyl-2-sn-acetyl:glycero-3-phosphocholine (PAF).^{3,17,18}

5-HETE has been shown to possess multiple roles in cellular metabolism. It has been demonstrated to mobilize intracellular calcium,^{19,20} enhance the uptake of calcium by neutrophils,²¹ augment the release of O_2^- by neutrophils,²² increase the binding of (³H)phorbol-12,13-dibutyrate to intact neutrophils,²² and modulate potassium channels in neurons.²³ 5-HETE has also been shown directly or indirectly to stimulate PLA₂²⁴⁻²⁶ and redistribute PKC in cytochalasin B-treated neutrophils.¹⁹

In the present paper, we will demonstrate that 5-HPETE can mobilize DAG, an activator of PKC, from different phospholipid pools of dimethyl-sulfoxide (DMSO)-differentiated HL-60 cells after stimulation with fmlp. Also, the activation of PKC is sufficient to mobilize AA and lyso-PAF from the complex lipid store without alteration in intracellular calcium.

EXPERIMENTAL PROCEDURES

HL-60 cells were supplied by Prof. G. Schultz, Institute of Pharmacology, Berlin and differentiated for 48 hours with 1.25% DMSO according to known procedures. The cells were harvested and labeled with 5.10^5 cpm (³H)AA/10⁷ cells (specific activity 80–135 Ci/mmol, Amersham, F.R.G.) by incubation at 37°C for 30 min. The cells were then washed twice with phosphate buffer saline (PBS) and resuspended to a concentration of 1.10^7 cells/ml for incubations. 60–65% of (³H)AA was taken up by HL-60 cells. The viability of cells was examined by the trypan blue exclusion method.

Incubation Conditions

To a sample of the HL-60 cell suspension $(0.5 \text{ ml}; 5.10^6 \text{ cells})$ after equilibration at 37°C for 5min were added either 0.4ml PBS or 5-HPETE (final concentration 0-20 μ M) simultaneously with 0.1ml fmlp (final concentration, 1 μ M) to start the reaction. After 3min the incubation was stopped by the addition of 3.8 volume of methanol:chloroform:glacial acetic acid (2:1:0.04, v/v).

Determination of PAF

In this study we have determined only C_{16} -PAF released by HL-60 cells, which constitutes the major component of the several PAF species known.²⁷

The samples were extracted according to Bligh and Dyer²⁸ and purified with the help of HPLC as described.²⁹ Fractions containing PAF underwent a second Bligh and Dyer extraction. The organic phase was dried under nitrogen and the residue was reconstituted in Tyrpde buffer. Radioactivity was counted in scintillation counter³⁰.

Assay of Diacylglycerol

5.10⁶ cells/ml were equilibrated at 37°C for 5 min before starting the reaction by simultaneous addition of 0.4 ml of 5-HPETE (final concentration, $0-20 \,\mu$ M) and 0.1 ml of fmlp (final concentration, $1 \,\mu$ M). The reaction was stopped after 3 min and the mixture was extracted according to Bligh and Dyer.²⁸ Diacylglycerol was assayed as described.³¹⁻³³ For the time course study, incubation was carried out with simultaneous addition of $10 \,\mu$ M 5-HPETE and $1 \,\mu$ M fmlp for various times.

Assay of Intracellular Calcium

Intracellular calcium was determined by a modified method as described.³⁴ Briefly, 5.10⁶ cells were treated with 5 μ M FURA-2/AM (Serva, F.R.G.) at 37°C for 30 min. After washing with PBS, cells were resuspended in PBS and equilibrated for 5 min before challenging simultaneously with 5-HPETE (final concentration, 0–20 μ M) and fmlp (final concentration, 1 μ M). The fluorescence was measured using a Hitachi F 4000 fluorescence spectrophotometer. Intracellular calcium concentrations were quantified as described.^{35,36}

Assay of Inositol Phosphates (Total IP)

HL-60 cells were incubated with $0.5 \,\mu\text{Ci}$ of myo-(2-³H) inositol (10–20 Ci/mmol, Amersham, F.R.G.) in EGTA containing buffer at 37°C for 3 hours. After washing twice with PBS, cells were resuspended in PBS without EGTA. Cell suspensions (0.5 ml; 5.10⁶ cells) were incubated simultaneously with 0.4 ml 5-HPETE (final concentration, 0–20 μ M) and 0.1 ml fmlp (final concentration, 1 μ M) for 1 min. After stopping the reaction as described above, inositol phosphates were separated by anion-exchange chromatography as reported.³⁷ ³H-inositol phosphates indicated the sum of inositol-1-phosphate (IP₁), inositol-1,4-biphosphate (IP₂) and inositol-1,4,5triphosphate (IP₃).

RESULTS

We have used 5-HPETE in our study to reduce the inhibition of 5-lipoxygenase by 5-HETE.³⁸ Further, 5-HPETE has been suggested to autocatalyze the 5-lipoxygenase enzyme,³⁸ and is not rapidly transformed to 5-HETE in HL-60 cells as compared with human neutrophils (unpublished).

Table I shows that exposure of HL-60 cells to $1 \mu M$ fmlp for 3 min leads to an adequate formation of ³H-PAF. Exogenously added 5-HPETE potentiated the formation of ³H-PAF in a dose-dependent manner, and peaked at a concentration of $10 \mu M$ 5-HPETE. Further addition of 5-HPETE upto $20 \mu M$ did not alter the formation of PAF. Cell viability was not affected at the concentrations used. In the absence of fmlp, 5-HPETE was incapable of stimulating detectable PAF synthesis at all concentrations.

It has been reported previously that the activation of PKC is required for the synthesis of PAF and LTB₄.¹³ but PKC activation alone (e.g. with phorbol ester) is not sufficient for the synthesis of PAF and LTB₄, the synthesis requires mobilization of intracellular calcium as well.¹³ In order to investigate if the potentiation of PAF formation by 5-HPETE is related to an additional increase in intracellular calcium, we measured the levels of intracellular calcium by adding various concentrations of 5-HPETE with fmlp to HL-60 cells (Table II). Fmlp (1 μ M) caused a rapid increase in intracellular calcium level from 212 \pm 37 nM (mean \pm SEM) basal value to 538 \pm 22 mM peak value. Surprisingly, no additional increase of intracellular calcium level was observed with any concentration of 5-HPETE. However, in the absence of fmlp, the mobilization of intracellular calcium by 5-HPETE concentrations was of the same magnitude as with fmlp alone. The maximum intracellular calcium level was achieved with 5 μ M 5-HPETE. It is conceivable that the application of 1 μ M fmlp caused maximum mobilization of intracellular calcium, so that 5-

	Experiment	PAF (dpm)
1.	cells alone	36 ± 17
2.	cell + 1 μ M fmlp	507 ± 37
3.	cells + $1 \mu M$ fmlp + $1 \mu M$ 5-HPETE	612 ± 52
4.	cells + 1 μ M fmlp + 2.5 μ M 5-HPETE	1194 ± 78
5.	cells + 1 μ M fmlp + 5 μ M 5-HPETE	2112 ± 44
5.	cells + 1 μ M fmlp + 10 μ M 5-HPETE	2474 ± 81
6.	cells + 1 μ M fmlp + 20 μ M 5-HPETE	2568 ± 91
7.	cells + $1 \mu M$ 5-HPETE	48 ± 21
8.	cells + $2.5 \mu M$ 5-HPETE	50 ± 12
9.	cells + $5 \mu M$ 5-HPETE	98 ± 22
10.	cells + $10 \mu M$ 5-HPETE	107 ± 43
11.	cells + $20\mu\text{M}$ 5-HPETE	94 ± 36
12.	vehicle	41 ± 19

TABLE 1 Effect of 5-HPETE on the synthesis of PAF (C_{16} species) by differentiated HL-60 cells in presence and absence of 1 μ M fmlp

5.10⁶ labeled HL-60 cells were equilibrated for 5 min before starting the reaction by addition of various concentrations of 5-HPETE and 1 μ M fmlp. For experimental details see *Experimental Procedures*. Values represent the mean \pm SEM of 3 separate experiments

HPETE was unable to mobilize intracellular calcium from empty stores. We examined, therefore, the effect of various concentrations of 5-HPETE together with suboptimal concentrations of fmlp (10–100 nM) and found similar results as shown in Table II. This suggests that 5-HPETE may bind to same receptors as fmlp. Treatment of HL-60 cells with pertussis toxin caused significant inhibition of intracellular calcium release by 5-HPETE (manuscript in preparation). The presence of receptors for 5-HETE on human neutrophils has been speculated upon in a previous report.¹⁹

TABLE 2

Effect of 5-HPETE on the release of intracellular calcium by differentiated HL-60 cells in presence and absence of 1 μ M fmlp. Values represent the mean \pm SEM of 3 separate experiments. For experimental details see *Experimental Procedures*.

	Experiment	Concentration of intra- cellular calcium (nM)
1.	cells alone	212 ± 27
2.	cell + 1 μ M fmlp	538 ± 22
3.	cells + $1 \mu M$ fmlp + $1 \mu M$ 5-HPETE	528 ± 39
4.	cells + 1 μ M fmlp + 2.5 μ M 5-HPETE	544 ± 12
5.	cells + 1 μ M fmlp + 5 μ M 5-HPETE	551 ± 18
5. 5.	cells + $1 \mu M$ fmlp + $10 \mu M$ 5-HPETE	577 ± 33
6.	cells + 1 μ M fmlp + 20 μ M 5-HPETE	603 ± 42
7.	cells + $1 \mu M$ 5-HPETE	410 ± 34
8.	cells + 2.5 μ M 5-HPETE	524 ± 46
9.	cells + $5 \mu M$ 5-HPETE	561 ± 17
10.	cells + $10 \mu M$ 5-HPETE	596 ± 24
11.	cells + $20 \mu M$ 5-HPETE	610 ± 73
12.	vehicle	206 ± 29

5.10⁶ labeled HL-60 cells were equilibrated for 5 min before starting the reaction by addition of various concentrations of 5-HPETE and 1 μ M fmlp. For experimental details see *Experimental Procedures*. Values represent the mean \pm SEM of 3 separate experiments

	Experiment	% Increase of control	
		Total IP	DAG
l.	cells alone	0	0
	cells + 1 μ M fmlp	247	298
	cells + $1 \mu M$ fmlp + $1 \mu M$ 5-HPETE	282	333
	cells + $1 \mu M$ fmlp + $2.5 \mu M$ 5-HPETE	321	356
	cells + $1 \mu M$ fmlp + $5 \mu M$ 5-HPETE	324	403
	cells + 1 μ M fmlp + 20 μ M 5-HPETE	296	521
	vehicle	7	11

TABLE 3 Effect of 5-HPETE on total inostol phosphates (total IP) and DAG of differentiated HL-60 cells after stimulation with 1 μ M fmlp. Values represent the % increase of control and are mean of three separate experiments.

Besides intracellular calcium, DAG is another potent activator of PKC.¹² It seemed pertinent, therefore, to determine the breakdown products of PIP₂ inositol phosphates as well as DAG after stimulation of HL-60 cells with various concentrations of 5-HPETE in the presence and absence of 1 μ M fmlp. As shown in Table III, the stimulation of HL-60 cells with 1 μ M fmlp alone caused an increase of total IP level by 250% as compared with the basal value. Addition of 5-HPETE and fmlp together resulted in an additional dose-dependent enhancement of total IP levels reaching a peak value at a concentration of 2.5 μ M; further increases of the 5-HPETE concentration did not alter the total IP level. On the other hand, DAG levels were found to increase in a dose-dependent manner with added 5-HPETE up to a maximum con-

FIGURE 1 Effect of 5-HPETE on DAG production HL-60 cells were stimulated with $1 \mu M$ fmlp in absence and presence of $10 \mu M$ 5-HPETE. For experimental details see *Experimental Procedures*. Values represent the mean of three separate experiments.

centration of $20 \,\mu\text{M}$ 5-HPETE. This dissociation in total IP levels and DAG levels after treatment with 5-HPETE of fmlp-stimulated HL-60 cells is indicative of an additional source for DAG other than PIP₂.

The above observation was further supported by a time course study of DAG production in HL-60 cells treated with $1 \mu M$ fmlp and $10 \mu M$ 5-HPETE (Figure 1). It can be seen that maximum production of DAG is achieved with and without 5-HPETE within 120 seconds. Moreover, 5-HPETE caused an additional release of about 50% DAG in comparison to fmlp alone. A significant increase is observed even as soon as 10 seconds after the stimulation of cells. This observation is in contradiction to a previous report where no DAG could be detected within the first 30 seconds.³⁶ Another striking feature shown in Figure 1 is the sustaining level of DAG during the period of observation (10 min); DAG levels achieved with fmlp alone decreased significantly during this period.

DISCUSSION

In the present study we have investigated the effect of 5-HPETE on PAF formation by fmlp-stimulated differentiated HL-60 cells. Although 5-HPETE at all concentrations used in our study was incapable alone of stimulating a detectable PAF synthesis, it potentiated PAF synthesis in a dose-dependent manner in concert with 1 μ M fmlp (Table I). In previous studies 5-HPETE has been reported to modulate A23187induced PAF formation in human neutrophils by direct activation of PLA₂.³⁹ Those observations were primarily based on the inhibition of PAF formation by nordihydroguaretic acid (NDGA).³⁹ But, the stimulation of HL-60 cells with fmlp leads to a receptor-G protein coupled activation of PLC with subsequent generation of IP₃ and DAG as intracellular messengers.⁹ IP₃ triggers the rapid elevation of intracellular calcium, which in turn activates PKC and also PLA₂.³⁹

Although 5-HPETE in the absence of fmlp does not synthesize detectable amounts of PAF (Table I), it mobilizes intracellular calcium by approx. 300 nM depending upon the concentration of 5-HPETE applied (Table II). However, this level of intracellular calcium is incapable alone of stimulating PLA₂.

The synthesis of PAF by HL-60 cells stimulated with fmlp alone (Table I) in our studies, and a report which showed complete inhibition of PAF and LTB₄ synthesis by long chain amines like sphingosine $(15 \,\mu\text{M})$, stearylamine $(25 \,\mu\text{M})$ and palmitoyl-carnitine $(25 \,\mu\text{M})$ in A23187-stimulated human neutrophils,¹³ are indicative of a PKC-mediated mechanism for the activation of PLA₂. Further, it has been reported that PKC requires an elevated intracellular calcium to trigger the PLA₂ activity.¹³

However, our observations do not show any additional increase in the intracellular calcium level due to 5-HPETE in fmlp-stimulated cells. But a significant and rapid increase in DAG level, which was sustained for 10 min, was caused by $10 \,\mu$ M of 5-HPETE (Figure 1). The results obtained with higher levels of DAG with 5-HPETE are interesting because fmlp-stimulated HL-60 phagocytes have recently been shown to demonstrate a 10-fold, calcium-mediated, increase in the affinity for DAG site on PKC.³³ This may explain the enhancement of PAF formation by 5-HPETE in HL-60 cells stimulated with fmlp.

Table III shows another striking feature of our observations. Whereas (³H) inositol phosphates showed maximum PAF formation with 2.5 μ M of 5-HPETE from fmlp-stimulated cells, the formation of DAG continued to increase in a dose-dependent

manner up to 20 μ M of 5-HPETE. This is further supported by Figure 1 which shows the maximum accumulation of DAG at 2 min. This level is sustained for another 10 min suggesting that either DAG is accumulating after the PIP₂ hydrolysis, or it is generated from some membrane pools other than PIP₂. The latter possibility can also be derived from the fact that the hydrolysis of PIP₂ to IP₃ is completed within 30 seconds,⁴⁰ whereas DAG production increased steadily for 2 min. Phosphatidylcholine, and also inositol-1-phosphate, have been suggested as the major precursor of DAG production in different cell systems as substrates for PLC.³³ However, inositol-1-phosphate does not serve in absence of calcium as a substrate for PLC,³³ so it is likely that 5-HPETE or its transformed product 5-HETE, which have been described as modulators of intracellular calcium,²² act as cofactors for the metabolism of inositol-1-phosphate.

The dose-dependent increase in the synthesis of phosphatidic acid by 5-HPETE (1 $-20 \,\mu$ M) in fmlp-stimulated HL-60 cells (data not shown) ruled out any possible accumulation of DAG.

We conclude that the enhancement of fmlp-stimulated PAF formation by 5-HPETE in differentiated HL-60 cells is primarily a result of increased DAG production from different phospholipid pools. As already reported in literature,³³ the increased sensitivity of PKC for DAG sites enables it to activate PLA₂ and thus mobilize lyso-PAF and AA from complex lipid stores.

Acknowledgements

This work was generously supported by Association for International Cancer Research, U.K. and Deutsche Forschungsgemeinschaft, F.R.G. (Ni 242/2-1).

References

- 1. Swendsen, C.L., Ellis, J.M., Chilton, F.H., O'Flaherty J.T., and Wykle, R.L. Biochem. Biophys. Res. Comm., 113, 72, (1983).
- 2. Chilton, F.H., Ellis, J.M., Olson, S.C. and Wykle, R.L. J. Biol. Chem., 259, 12014, (1984).
- 3. Albert, D.H. and Snyder, F. Biochim. Biophys. Acta, 796, 92, (1984).
- 4. Purdon, A.D. and Smith, J.B. J. Biol. Chem., 260, 12700, (1985).
- 5. Nakagawa, Y., Kurihera, K., Sugiura, T. and Waku, K. Biochim. Biophys. Acta, 876, 601, (1986).
- 6. Bills, T.K., Smith, J.B. and Silver, M.J. J. Clin. Invest., 60, 1, (1977).
- 7. Rittenhouse-Simmons, S. J. Clin. Invest., 63, 580, (1979).
- 8. Bell, R.L., Kennerly, D.L., Stanford, N. and Majerus, R.W. Proc. Natl. Acad. Sci. U.S.A., 76, 3238, (1979).
- 9. Snyderman, R., Smith, C.D. and Verghese, M.W. J. Leuk. Biol., 40, 785, (1986).
- 10. Berridge, M.J. and Irvine, R.F. Nature, 312, 315, (1984).
- 11. Cockcroft, S. Trends Biol. Sci., 12, 75, (1987).
- 12. Nishizuka, Y. Nature, 308, 6933, (1984).
- 13. McIntyre, T.M., Reinhold, S.L., Prescott, S.M. and Zimmerman, G.A. J. Biol. Chem., 262, 15370, (1987).
- 14. Walsh, C.E., Waite, B.M., Thomas, M.J. and DeChatelet, R.L. J. Biol. Chem., 256, 7228, (1981).
- 15. Borgeat, P. and Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 76, 2148, (1979).
- 16. Stenson, W.F. and Parker, C.W. J. Clin. Invest., 64, 1457, (1979).
- 17. Mencia-Huerta, J.M., Roubin, R., Morgat, J.L. and Benveniste, J. J. Immunol., 129, 804, (1982).
- 18. Roubin, R., Mencia-Huerta, J.M., Landes, A. and Benveniste, J. J. Immunol., 129, 809 (1982).
- 19. O'Flaherty, J.T. and Nishihara, J. Biochem. Biophys. Res. Comm., 148, 575, (1987).
- 20. O'Flaherty, J.T., Jacobson, D. and Redman, J. J. Immunol., 140, 4323, (1988).
- 21. Naccache, P.H., Shaáfi, R.I., Borgeat, P. and Goetzel, E.J. J. Clin. Invest., 67, 1584, (1981).
- Badwey, J.A., Robinson, J.M., Horn, W., Soberman, R.J., Karnovsky, M.J. and Karnovsky, M.L. J. Biol. Chem., 263, 2279, (1988).

- Piomelli, D., Volterra, A., Dalne, N., Siegelbaum, S.A., Kandel, E.R., Scwarty, J.H. and Belardetti, F. Nature, 328, 38, (1987).
- 24. Walsh, C.E., DeChatelet, R.L., Chilton, F.H. Wykle, R.L. and Waite, B.M. Biochim. Biophys. Acta, 750, 32, (1983).
- 25. Mueller, H.W., O'Flaherty, J.T. and Wykle, R.L. J. Biol. Chem., 258, 6213, (1983).
- 26. Alonso, F., Henson, P.M. and Leslie, C.C. Biochim. Biphys. Acta, 878, 273, (1988).
- 27. Oda, M., Satouchi, K., Yasunaga, K. and Saito, K. J. Immunol., 134, 1090, (1985).
- 28. Bligh, E.G. and Dyer, W.J. Can. J. Biochem. Physiol., 37, 911, (1959).
- 29. Wardlow, M.L. J. Chromatogr., 342, 380, (1985).
- 30. Müller, S. and Nigam, S. J. Immunol. Methods, submitted.
- 31. Preiss, E., Loomis, C.R., Bishop, W.R., Stein, R., Niedel, J.E. and Bell, R.M. J. Biol. Chem., 261, 8597, (1986).
- 32. Loomis, C.R., Walsh, J.P. and Bell, R.M. J. Biol. Chem., 260, 4091, (1985).
- 33. Preiss, J.E., Bell, R.M. and Niedel, M. J. Immunol., 138, 1542, (1987).
- Hirafuji, M., Maeyama, K., Watanabe, T. and Ogura, Y. Biochem. Biophys. Res. Comm., 154, 910, (1988).
- 35. Grynkiewicz, G., Poenie, M. and Tsien, R.Y. J. Biol. Chem., 260, 3440, (1985).
- 36. Scanlon, M., Williams, D.A. and Fay, F.S. J. Biol. Chem., 262, 6308, (1987).
- 37. Watson, S.P., McConell, R.T. and Lapetina, E.G. J. Biol. Chem., 259, 13199, (1984).
- 38. Haurand, M. and Flohé, L. Biol. Chem., Hoppe Seyler, 369, 133, (1988).
- 39. Billah, M., Bryant, R.W. and Siegel, M.I. J. Biol. Chem., 260, 6899, (1985).
- 40. Dougherty, R.W., Godfrey, P.O., Hoyle, P.C., Putney, J.W. and Freer, R.J., *Biochem J.*, 222, 307, (1984).

Accepted by Prof. T. F. Stater

